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Characterizing self-similarity in bacteria DNA sequences
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In this paper some parametric methods are introduced to characterize the self-similarity of DNA sequences.
Compared with Fourier analysis, these methods perform statistically more stably and yield more reliable
results. Using these methods, eight whole genomes of bacteria provided by NCBI are analyzed. Long-range
correlation properties in the nucleotide density distribution along these DNA sequences are explored. Estima-
tion results show that the long-range correlation structure prevails through the entire molecule of DNA. Higher
order statistics through coarse graining reveal that rather than multifractal, there are only monofractal phenom-
ena presented in the sequences. Hence, the nucleotide density distribution can be modeled asymptotically as
fractional Gaussian noise. This result points to a new direction for analyzing and understanding the intrinsic
structures of DNA sequences.@S1063-651X~98!01009-5#
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I. INTRODUCTION

Many attempts have been made to find informational c
tent in DNA sequences, especially with the progress of
human genome project. The coding sequences have
studied extensively, and in recent years, the study of co
lation structure in DNA sequences has evolved from lo
consideration to global awareness. As commented
Román-Roldán et al.: ‘‘ ~1987 to present!, . . . Themost out-
standing result was the finding of long-range correlation
DNA sequences.’’@1#.

During the 1990s, several statistical methods originat
from the field of signal processing and pattern recognit
were introduced into the study of long-range correlation
DNA sequences. More details about the studies in this fi
their methods and results, can be found in@2–11# and the
review of Roma´n-Roldán et al. @1# and Li @12#.

In previous works, Fourier analysis was used as one of
major techniques to detect and analyze long-range corr
tion properties. A power law in the lower-frequency part
the DNA spectrum is considered to be evidence of lo
range correlation structure. The long-range correlation st
ture is described as a 1/f a process, and thea value is used as
the distinguishing feature among different classifications
well as between the coding and noncoding sequen
@3,5,9,11#. However, in terms of statistical accuracy, Four
analysis is not the best way to estimate the fractional ex
nent, for it lacks statistical robustness in parameter esti
tion.

Before further investigating the long-range correlati
properties in DNA sequences, we must first be aware
some technical notions about the length scale as well as
model assumption of the correlation structures.

First, what is the length scale meant by the term ‘‘lon
range’’ in the terminology ‘‘long-range~base-base, statisti
cal! correlation’’? In some early papers, it is meant to

*Electronic address: luxin@jerry.au.tsinghua.edu.cn
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longer than~a! 3–6 bases@13# or ~b! 800 bases@5# or ~c!
1–10kb @8#. The progress in sequencing has enabled
searchers to analyze longer DNA sequences and gather
information. The human genome project is scheduled to
ish in about 2005; at that time, we will have DNA sequenc
of several hundred million bases, or even several bill
bases in length. This makes it possible to study
asymptotic long-range correlation structure of DNA s
quences. At the same time, the study can reveal much a
correlation structure in the lower-frequency part. Therefo
the method to estimate the correlation structure must also
considered for longer sequences. In other words, altho
the DNA sequence lengths are always bounded, the sta
cal method used must still be able to describe the asymp
properties of the correlation structure when the data are
proaching infinity.

The second is about the potential mathematical mo
when we use various methods to describe the correla
structures. The DNA sequences must be assumed to b
godic and stationary before being analyzed by Fourier tra
formation. DNA sequences all have finite lengths and can
modeled as self-similar processes embedded in white b
ground noise. Thus, under this condition, parametric me
ods will be more promising than nonparametric metho
such as Fourier analysis, as far as modeling accuracy is
cerned, and the result will be more robust. This is the rea
that we use the Fractional Gaussian Noise~FGN! model and
Hurst index to describe the long-range correlation proper
in this paper.

Another statistical issue we should be aware of is that
parametric methods are model dependent. When we m
the DNA sequence as a FGN process, we must check
valid scale and model accuracy of the correlation structu
As discussed in@5#, DNA sequences exhibit a ‘‘partial 1/f a

spectrum,’’ so that the length scale that possesses these
erties should be checked carefully while using these me
ods.

In the field of traffic modeling in computer networks
long-range correlation phenomena have been investig
3578 © 1998 The American Physical Society
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PRE 58 3579CHARACTERIZING SELF-SIMILARITY IN BACTERIA . . .
extensively@14–17#. Many statistical algorithms to verify
long-range correlation have also been implemented succ
fully. Using these methods, we analyzed in great detail
long-range correlation properties in the DNA sequences.
goal of this paper is to explore the asymptotic long-ran
correlation properties of DNA sequences, therefore we
lected whole genomes of bacteria, which usually have
length of more than 1 000 000 base pairs~BP!.

In this paper whole genomes of seven eubacteria: Esch
chia coli ~4 639 221 bp, G1C: 50.8%!, Haemophilus influ-
enzae~1 830 140 BP, G1C: 38.1%!, Helicobacter pylori
~1 167 867 BP, G1C: 38.9%!, Mycoplasma genitalium
~580 073 BP, G1C: 31.7%!, Mycoplasma pneumonia
~816 394 BP, G1C: 40.0%!, Rhizobium sp. NGR234
~536 165 BP, G1C: 58.5%!, Synechocystis PCC680
~3 573 470 BP, G1C: 47.7%!, and 1 archaea: Methanoco
cus jannaschii~1 664 970 BP, G1C: 31.4%! are investi-
gated. ~These data are provided by NCBI ftp:
ncbi.nlm.nih.gov/genbank/genomes/bacteria G1C stands for
guanine1cytosine!. Using the average spectrum and oth
statistical methods, it was found that there exist long-ra
correlation properties in the DNA sequences of bacte
within scales longer than 200 BP. This property does
vanish when the length is extended to the whole geno
Thus the correlation structure under the length scale betw
200 BP and the whole sequence can be modeled by the
process asymptotically.

The paper is organized as follows. In Sec. II we give
brief introduction to the self-similar stochastic process~or
long-range dependent process!, as well as the statistica
methods of Hurst index estimation. In the study of lon
range correlation structures of DNA sequences, the para
ric methods introduced in Sec. II will be more promising a
the results will be more robust than nonparametric meth
such as Fourier analysis. In Sec. III the long-range corr
tion properties in the DNA sequences of bacteria are stud
Their Hurst indexes are estimated by various methods,
the results are presented. The consistency among thes
sults further supports the existence of long-range correla
properties in DNA sequences of bacteria and reinforces
reliability of these methods. Finally, biological meaning a
origin of long-range correlation properties are discussed
Sec. IV.

II. MATHEMATICAL DEFINITION OF SELF-SIMILAR
STOCHASTIC PROCESS AND ESTIMATION OF

THE HURST INDEX

In this section we briefly introduce the self-similar st
chastic process and the methods of Hurst index estima
Details can be found in@15,18,19# and relative topics listed
therein.

Suppose we have a covariance stationary stochastic
cessX5(X1 ,X2 , . . . ,Xn , . . . ), which has the following au-
tocorrelation structure:

r ~k!5E@~Xt2m!~Xt1k2m!#;k2bL1~k!, k→` ~1!

where 0,b,1, andL1 is a slowly varying function, that is
limk→`L1(kx)/L1(k)51 for all x.0. Then we callX a self-
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similar stochastic process in the sense of Eq.~1! @14#. In
frequency domain, it can be expressed equivalently as

f ~l!;l211bL2~l!, l→0 ~2!

whereL2 is a slowly varying function andf (l) is the spec-
tral density function.

Definition 1. Let X(m)5(X1
(m) ,X2

(m) , . . . )(m
51,2,3, . . . ) be them block process ofX, defined as sum-
ming the original seriesX over nonoverlapping blocks o
size m: X(m)(k)5(1/m)( i 5(k21)m11

km X( i ), k51,2, . . . , and
r (m) is the autocorrelation function ofX(m).

Definition 2. Xis called strictly~second order! self-similar
with the Hurst indexH512b/2, if the m block process
X(m) has the same correlation structure with the original p
cessX, that is,

r ~m!~k!5r ~k! for all ~m51,2, . . . ,k51,2, . . .!. ~3!

Definition 3.If Eq. ~3! can only hold whenm→`, thenX
is called asymptotically self-similar, with the Hurst inde
H512b/2. That is, whenm→`,

r ~m!~1!→212b21,r ~m!~k!→
1

2
d2~k22b!~k52,3, . . .!,

~4!

whered2
„f (k)…5 f (k11)22 f (k)1 f (k21). Definition 2 is

often used in modeling the self-similar stochastic process,
it can express the properties of the stochastic process u
largem ~time scale!, which is what we are interested in.

The main feature of a strictly and asymptotically se
similar stochastic process is the autocorrelation funct
r (m)(k)Þ0 whenm→`. But in the short-range correlatio
process, theX(m) asymptotically approaches white noise,
r (m)(k)→0 whenm→`. Therefore stochastic processes th
satisfy definition 3 are also called long-range dependent p
cesses. Its characteristic in the frequency domain is
f (l);l211bL2(l) (0,b,1) whenl→0. L2(* ) is also a
slowly varying function andf (l)5(kr (k)e2 ikl is the spec-
trum density function. The FGN process, which is imp
mented in this paper for description of the correlation pro
erties in the lower-frequency part of the DNA spectrum,
one of the simplest and most well established models
stationary self-similar processes.

One of the attractive features of using self-similar mode
when appropriate, is that the degree of self-similarity can
expressed by only a single parameter. This parameter
presses the speed of decay of the autocorrelation func
The parameter used is the Hurst indexH512b/2. Thus, for
self-similar series with long-range dependence, 1/2,H,1.
As H→1, the degree of both self-similarity and long-ran
dependence increases. Otherwise, if the Hurst index e
mated Ĥ is approximately equal to 0.5 whenm→`, it
means that only short-range correlation is presented, or
X(m) is asymptotic white noise@20#.

It has been discussed in@3,5,9,11# that the DNA se-
quences act as self-similar processes. Therefore, in the
mation of self-similar exponents of DNA sequences, t
implementation of fractal-based methods, which possess
nature of self-similarity, is natural and convenient, and
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FIG. 1. Average spectrum of adenine from E. coli with sub
quences~a! 1024,~b! 4096, and~c! 16 384.
-

FIG. 2. ~a! 100 BP density distribution of adenine from E. co
and ~b! a FGN process with the same length and a Hurst index
0.7.
s
the
FIG. 3. Linear fitting figure for Hurst index estimation of adenine from E. coli. TheX axis is the log plot of block size, which reflect
the length scale in which the correlation structure exists. TheY axis is the statistics calculated by various methods. Only the slopes in
figures are analyzed, which are directly related to the Hurst index.
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PRE 58 3581CHARACTERIZING SELF-SIMILARITY IN BACTERIA . . .
results yielded will be more accurate. The statistical to
used in this paper for the estimation of Hurst index inclu
time domain methods such as RS~rescaled adjusted rang
statistic! analysis @21#, variance-time analysis@18#, the
AVAS method~absolute values of the aggregated series!, the
Higuchi method@19#, and the wavelet-domain-based E
analysis method@22#.

The main idea of time domain methods can be summ
rized as two steps: First, to calculate some statistics in thm
block process; second, to investigate the power-law relat
ship between the block sizem and the calculated statistics
The wavelet domain EM method can be used for the esti
tion of fractal parameter of signals under additive wh
noise. This method is an iterative algorithm, including anE
step and anM step. Using parameters under various wave
scales, theE step gets the estimation for variance of sign
and noise. TheM step iterates the estimation results un
they converge in a MLE~maximum likelihood estimate!
sense. This method can be used to examine the consist
of estimation results under various wavelet scales.

TABLE I. Estimation results of various methods: E. coli.

A T C G

RS 0.7097 0.7014 0.7284 0.7414
Variance time 0.6777 0.6774 0.7819 0.806
Scale 2 0.7301 0.7330 0.7259 0.724
Scale 4 0.7310 0.7337 0.7266 0.725
Scale 6 0.7309 0.7340 0.7259 0.724
Scale 8 0.7284 0.7319 0.7207 0.717
Scale 10 0.7096 0.7171 0.6980 0.691
Higuchi 0.6531 0.6615 0.7770 0.7934
AVAS 0.6760 0.6770 0.7940 0.8222
q51.5 0.6732 0.6726 0.7828 0.8088
q52 0.6692 0.6685 0.7732 0.7977
q52.5 0.6644 0.6646 0.7648 0.7883
q53 0.6559 0.6608 0.7571 0.7800
q53.5 0.6536 0.6570 0.7501 0.7501
q54 0.6481 0.6532 0.7437 0.7437

TABLE II. Estimation results of various methods: H. influenza

A T C G

RS 0.6779 0.7234 0.7809 0.7916
Variance time 0.6533 0.6807 0.7570 0.7688
Scale 2 0.6954 0.7053 0.7075 0.7083
Scale 4 0.6963 0.7035 0.7072 0.7066
Scale 6 0.6992 0.7044 0.7049 0.7014
Scale 8 0.6940 0.6989 0.6815 0.6780
Scale 10 0.6648 0.6595 0.6441 0.6336
Higuchi 0.6344 0.6741 0.7517 0.7498
AVAS 0.6545 0.6649 0.7677 0.7678
q51.5 0.6506 0.6684 0.7582 0.7654
q52 0.6466 0.6725 0.7492 0.7611
q52.5 0.6424 0.6760 0.7406 0.7560
q53 0.6382 0.6784 0.7321 0.7497
q53.5 0.6338 0.6795 0.7237 0.7237
q54 0.6294 0.6795 0.7155 0.7155
s
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III. LONG-RANGE CORRELATION PROPERTIES
IN THE DNA SEQUENCES OF BACTERIA

To answer the question of whether or not there exist lo
range correlation properties in the DNA sequences of ba
ria, the average spectrum is studied first. In Buldyrevet al.
@3#, the subsequence length is 512, but in this paper,
subsequence length varies from 1024 to 16 384. Figur
shows the average spectrum of adenine from E. coli; ot
base density distributions along each bacteria show the s
phenomenon.

Figure 1 shows that by increasing the subsequence len
the long-range correlation property is gradually more app
ent in the lower-frequency part of the DNA spectrum. T
middle part of the frequency is approximately white nois
but the lower-frequency part displays the long-range corre
tion property. The turning point between the middle and
lower part is about 200–400 BP. The long-range correlat
property is gradually more clearly displayed with the i

TABLE III. Estimation results of various methods: H. pylori.

A T C G

RS 0.7419 0.7460 0.7844 0.7697
Variance time 0.6716 0.5931 0.8051 0.7700
Scale 2 0.7412 0.7477 0.7054 0.7023
Scale 4 0.7427 0.7492 0.7050 0.7026
Scale 6 0.7430 0.7483 0.6987 0.6988
Scale 8 0.7353 0.7420 0.6817 0.6771
Scale 10 0.7035 0.7029 0.6506 0.6368
Higuchi 0.6830 0.6186 0.8032 0.7686
AVAS 0.6729 0.5920 0.8059 0.7738
q51.5 0.6676 0.5887 0.8007 0.7666
q52 0.6624 0.5847 0.7959 0.7609
q52.5 0.6657 0.5803 0.7915 0.7560
q53 0.6519 0.5754 0.7874 0.7516
q53.5 0.6465 0.5700 0.7835 0.7835
q54 0.6411 0.5641 0.7798 0.7798

TABLE IV. Estimation results of various methods: M. genitalium

A T C G

RS 0.7433 0.7813 0.7858 0.7632
Variance time 0.6512 0.8509 0.7850 0.8626
Scale 2 0.7167 0.7377 0.6461 0.6788
Scale 4 0.7190 0.7302 0.6343 0.6727
Scale 6 0.7166 0.7074 0.5896 0.6564
Scale 8 0.6936 0.6984 0.5760 0.6338
Scale 10 0.6371 0.6211 0.5042 0.6416
Higuchi 0.6432 0.8416 0.7477 0.8492
AVAS 0.6348 0.8522 0.7757 0.8657
q51.5 0.6387 0.8457 0.7760 0.8597
q52 0.6401 0.8406 0.7740 0.8527
q52.5 0.6399 0.8363 0.7705 0.8448
q53 0.6387 0.8324 0.6470 0.8362
q53.5 0.6369 0.8288 0.7609 0.7609
q54 0.6346 0.8255 0.7552 0.7552
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crease of subsequence length. Similar results can be de
for other bacteria genomes.

As discussed in Sec. I, Fourier analysis is a nonparame
method. The stationary property of the spectrum is hard
guarantee under a larger scale. In previous works, the D
sequences are segmented into subsequences with ide
lengths, and the average spectrum is calculated over t
subsequences@3,5,11#. With this approach, the correlatio
properties revealed are limited by the subsequence len
The number of subsequences for the calculation of ave
spectrum is limited, and the scale range of asymptotic lo
range correlation is hard to determine. In Buldyrevet al. @3#,
the power-law relationship in the low-frequency range
coding sequences is explained as the distortion by artifac
the Fourier transformation method. But in this section, w
Hurst index estimation, we will show that there does ex
long-range correlation in the DNA sequences of bacteria,
in a scale longer than several hundred BP.

In order to investigate the long-range correlation prop
ties in the DNA sequence more extensively, the statist
tools introduced in Sec. II are implemented. Hurst indexes
the seven eubacteria and one archaea are calculated, and
long-range correlation properties are discussed. When m
ping the DNA sequences to numerical sequences, anequal-
symbol multiplicationmethod, which is recommended b
Voss @11# and commented on by Maddox@6#, is imple-
mented. This method decomposes the nucleotide sequ
into four 0-1 sequences, and calculates their Hurst inde
separately. So what we have investigated are only the lo
range correlation properties of four single bases along
DNA molecule. This also points to some hints for the co
struction of the DNA molecule. Referring to Li@12#, only
three of them are independent, and when the approxim
strand symmetry is considered, only one is independent,
for the sake of statistical accuracy, all of them are calcula
in this paper.

For statistical convenience, we compressed the sequ
by sampling it with a range of 100 BP. Therefore our focus
narrowed down to the long-range correlation property wit
the density distribution of the four single bases, as well

TABLE V. Estimation results of various methods: M. pneumonia

A T C G

RS 0.8026 0.7897 0.7884 0.8277
Variance time 0.7529 0.7397 0.7303 0.7001
Scale 2 0.7526 0.7260 0.7233 0.7366
Scale 4 0.7541 0.7269 0.7233 0.7354
Scale 6 0.7385 0.7141 0.6931 0.7013
Scale 8 0.6881 0.6491 0.6300 0.6296
Scale 10 0.6590 0.5931 0.6041 0.5511
Higuchi 0.7338 0.7249 0.7170 0.7062
AVAS 0.7526 0.7194 0.7336 0.7005
q51.5 0.7502 0.7277 0.7292 0.6971
q52 0.7460 0.7324 0.7232 0.6929
q52.5 0.7412 0.7346 0.7264 0.6883
q53 0.7361 0.7352 0.6648 0.6834
q53.5 0.7309 0.7346 0.7023 0.7023
q54 0.7257 0.7333 0.6952 0.6952
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the difference between this distribution and an asympt
cally second order self-similar process~such as a FGN pro-
cess!.

Figure 2 shows the 100 BP density distribution of aden
from E. coli, as well as a FGN process with the same len
and a Hurst index equal to 0.7. From Fig. 2 it can be se
that the density distribution of nucleotide and the FGN p
cess all perform as self-similar processes. The algorith
introduced in Sec. II are implemented in this paper. The le
squares linear fitting in the log-log plots shows that the
sults are reliable. The corresponding calculated Hurst
dexes are all larger than 0.5, which testifies to the existe
of the long-range correlation structure within the nucleot
density distribution.

Figure 3 is the least squares fitting figure for the log-l
plot of adenine from E. coli, with the Hurst indexes es
mated by RS, variance-time, AVAS, and Higuchi metho
respectively.

. TABLE VI. Estimation results of various methods: R. NGR234

A T C G

RS 0.7542 0.7709 0.7765 0.7597
Variance time 0.6145 0.5905 0.6568 0.6147
Scale 2 0.7049 0.6773 0.6746 0.7030
Scale 4 0.7063 0.6774 0.6751 0.7018
Scale 6 0.6792 0.6451 0.6367 0.6795
Scale 8 0.6578 0.6167 0.6088 0.6266
Scale 10 0.5891 0.5212 0.5721 0.5773
Higuchi 0.6261 0.6250 0.6656 0.6076
AVAS 0.6120 0.5868 0.6574 0.6007
q51.5 0.6078 0.5843 0.6508 0.6024
q52 0.6025 0.5828 0.6449 0.6030
q52.5 0.5968 0.5814 0.6393 0.6025
q53 0.5918 0.5798 0.5217 0.6012
q53.5 0.5852 0.5778 0.6288 0.6288
q54 0.5793 0.5756 0.6239 0.6239

TABLE VII. Estimation results of various methods: Synechocys

A T C G

RS 0.7198 0.7158 0.7250 0.7141
Variance time 0.6458 0.6053 0.6050 0.6085
Scale 2 0.7269 0.7185 0.6946 0.6958
Scale 4 0.7278 0.7193 0.6956 0.6969
Scale 6 0.7230 0.7160 0.6870 0.6911
Scale 8 0.7142 0.7104 0.6767 0.6830
Scale 10 0.6749 0.6761 0.6307 0.6440
Higuchi 0.6503 0.6301 0.6113 0.6224
AVAS 0.6429 0.6097 0.6005 0.6050
q51.5 0.6418 0.6051 0.5999 0.6041
q52 0.6402 0.5990 0.5994 0.6030
q52.5 0.6377 0.5940 0.5986 0.6016
q53 0.6343 0.5879 0.5975 0.5999
q53.5 0.6303 0.5816 0.5959 0.5959
q54 0.6357 0.5752 0.5939 0.5939
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In Tables I–VIII, estimation results of the Hurst index fo
all eight bacteria sequences by various methods are
sented. Because the DNA sequences are not strictly
similar processes and the lengths of sequences are finite
estimation results of various methods may slightly dif
from each other. But so long as the Hurst indexes estima
are all greater than 0.5 and consistent, the long-range co
lation property is verified.

Scale 2, scale 4, scale 6, scale 8, and scale 10 are
estimation results of the wavelet-based EM method un
various scales. When the scale of wavelet changes from
to ten and the frequency range becomes narrower, a loca~or
high-frequency! feature can be detected. Under coarse sc
of wavelet~scales 2, 4, and 6!, which correspond to the lowe
part of the frequency, the estimation results remain relativ
constant, which means that the density distribution of

TABLE VIII. Estimation results of various methods: M. jannasch

A T C G

RS 0.7642 0.7697 0.7875 0.7851
Variance time 0.6939 0.6066 0.7180 0.6309
Scale 2 0.7855 0.7936 0.8463 0.8496
Scale 4 0.7871 0.7956 0.8479 0.8515
Scale 6 0.7883 0.7963 0.8495 0.8534
Scale 8 0.7799 0.7834 0.8503 0.8492
Scale 10 0.7278 0.7361 0.7826 0.7899
Higuchi 0.6832 0.6166 0.7103 0.6385
AVAS 0.6818 0.5962 0.7010 0.6089
q51.5 0.6842 0.5972 0.7063 0.6166
q52 0.6847 0.5976 0.7088 0.6218
q52.5 0.6837 0.5972 0.7094 0.6250
q53 0.6815 0.5959 0.7082 0.6264
q53.5 0.6782 0.5937 0.7056 0.7056
q54 0.6741 0.5908 0.7015 0.7015
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e

nucleotide can be described asymptotically by the FGN p
cess in the lower part of the frequency. Under fine scale
wavelet, which correspond to the higher part of the f
quency, the decrease of the estimated Hurst index can
interpreted as in the smaller scale of the DNA sequence
cannot be well modeled by the FGN process any more;
is also due to the local features of DNA sequences.

Apart from the estimation of the Hurst index, the AVA
method can also serve as the estimation of higher order
tistics by means of the central moment of them block pro-
cess. This can serve to testify whether the long-range co
lation in the DNA sequence is constructed by a multifrac
or a monofractal process@23#. Under the condition that the
estimation results by coarse grain are all linear with
growth of the order of statistics, if the estimation resu
remain relatively constant, then the signal is only a se
similar process; otherwise, the sequence is considere
present a multifractal phenomenon. In Tables I–VIII, the li
labeled AVAS is the estimation result of the AVAS algo
rithm. q51.5, q52, q52.5, q53, q53.5, q54 are the es-
timation results of various orders of statistics. It can be s
from Tables I–VIII that the estimation results of the vario
orders of statistics are consistent, which means that
nucleotide density distribution along the DNA sequence c
be asymptotically modeled by the FGN process.

In Tables I–VIII, the results of scale 8 and scale 10 fro
the wavelet-based EM method are decreased, therefore
the results from the RS, variance-time, Higuchi, and AVA
methods and wavelet scales 2–6 are used to calcu
the mean and standard deviation of the Hurst index e
mation. From Tables I–VIII, it can be seen that the Hu
index estimated by various methods for the four single b
density distributions are all larger than 0.5. This mea
that there do exist long-range correlation properties alo
the DNA sequences. The mean and standard deviatio
the estimation results are listed in Table IX. It can be se
that the mean values are between 0.65 and 0.8, with rea
TABLE IX. Mean and standard deviation of estimation results from various methods.

Name of bacteria A T C G

E. coli Mean(Ĥ) 0.7012 0.7026 0.7514 0.7624

Std(Ĥ) 0.0321 0.0312 0.0312 0.0432

H. influenzae Mean(Ĥ) 0.6730 0.6938 0.7396 0.7420

Std(Ĥ) 0.0257 0.0209 0.0322 0.0364

H. pylori Mean(Ĥ) 0.7138 0.6850 0.7582 0.7408

Std(Ĥ) 0.0357 0.0788 0.0522 0.0371

M. genitalium Mean(Ĥ) 0.6964 0.7859 0.7092 0.7498

Std(Ĥ) 0.0395 0.0624 0.0831 0.0876

M. pneumoniae Mean(Ĥ) 0.7553 0.7344 0.7299 0.7297

Std(Ĥ) 0.0224 0.0256 0.0290 0.0461

R. NGR234 Mean(Ĥ) 0.6710 0.6533 0.6775 0.6667

Std(Ĥ) 0.0549 0.0635 0.0456 0.0604

Synechocystis Mean(Ĥ) 0.6909 0.6735 0.6599 0.6620

Std(Ĥ) 0.0419 0.0553 0.0522 0.0476

M. jannaschii Mean(Ĥ) 0.7406 0.7107 0.7801 0.7454

Std(Ĥ) 0.0515 0.0981 0.0693 0.1144



ty

th
ba

h
n
NA
e

ica
e

e
h

t
an

o
ex
or

red

in
ibit

the
d.
rier
tion-
the
ight
nge
The
–
of

tics
de-
an
der
the
s-

3584 PRE 58XIN LU, ZHIRONG SUN, HUIMIN CHEN, AND YANDA LI
ably small deviation, which further supports the reliabili
of these results.

IV. CONCLUSION

In this paper the long-range correlation properties in
whole genomes of bacteria are verified. The genomes of
teria always have a length of more than 1 000 000 BP. T
results of this paper suggest that the asymptotic long-ra
correlation property is one of the natural properties that D
sequences possess, and is directly related to the structur
function of the whole DNA molecule.

There are still many discussions concerning the biolog
meaning and the origin of the long-range correlation prop
ties in the DNA sequences. In@24–26#, these properties ar
considered to be related to the construction of the hig
order structure of the DNA molecule. In@11#, Voss points
out that the scale-independent correlations seem to offer
best compromise between efficient information transfer
immunity to errors on all scales. In@10,27#, it is argued that
neither the patchiness, the alternation of coding and nonc
ing regions, nor the repetitive sequences is able to fully
plain the long-range correlation properties of DNA. The c
a,
ys

F.

.

E

e
c-
e

ge

and

l
r-

er

he
d

d-
-

-

relation structure of DNA sequences can also be conside
to be a result of the evolution process@12#. A model called
the expansion-modification model, which is introduced
@28,29#, can emulate this process, and was shown to exh
the same properties.

In this paper some parametric methods to estimate
Hurst index from the FGN point of view are introduce
Compared with nonparametric methods such as Fou
analysis, the performance of these methods is more sta
ary when applied to sequences with finite length, and
results yielded are more robust. With these methods, e
whole bacteria genomes are analyzed, and the long-ra
correlation properties in these sequences are verified.
lower limit of the length scale for this property is about 200
400 BP, and it can extend through the whole molecule
DNA. In longer scales, the results from higher order statis
are consistent, so the lower-frequency part can be well
scribed asymptotically by a FGN process. This study c
motivate the analysis of the DNA sequence structures un
larger scales. Furthermore, the biological meaning behind
long-range correlation properties still calls for further inve
tigation.
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