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In this paper some parametric methods are introduced to characterize the self-similarity of DNA sequences.
Compared with Fourier analysis, these methods perform statistically more stably and yield more reliable
results. Using these methods, eight whole genomes of bacteria provided by NCBI are analyzed. Long-range
correlation properties in the nucleotide density distribution along these DNA sequences are explored. Estima-
tion results show that the long-range correlation structure prevails through the entire molecule of DNA. Higher
order statistics through coarse graining reveal that rather than multifractal, there are only monofractal phenom-
ena presented in the sequences. Hence, the nucleotide density distribution can be modeled asymptotically as
fractional Gaussian noise. This result points to a new direction for analyzing and understanding the intrinsic
structures of DNA sequencgs$S1063-651X98)01009-5

PACS numbdss): 87.10+e

I. INTRODUCTION longer than(a) 3—6 base$13] or (b) 800 baseg5] or (c)
1-10kb [8]. The progress in sequencing has enabled re-

Many attempts have been made to find informational consearchers to analyze longer DNA sequences and gather more
tent in DNA sequences, especially with the progress of théenformation. The human genome project is scheduled to fin-
human genome project. The coding sequences have beésh in about 2005; at that time, we will have DNA sequences
studied extensively, and in recent years, the study of corresf several hundred million bases, or even several billion
lation structure in DNA sequences has evolved from locabases in length. This makes it possible to study the
consideration to global awareness. As commented bwsymptotic long-range correlation structure of DNA se-
Roman-Roldan et al: “ (1987 to present. .. Themost out-  quences. At the same time, the study can reveal much about
standing result was the finding of long-range correlation incorrelation structure in the lower-frequency part. Therefore
DNA sequences.[1]. the method to estimate the correlation structure must also be

During the 1990s, several statistical methods originatingzonsidered for longer sequences. In other words, although
from the field of signal processing and pattern recognitionthe DNA sequence lengths are always bounded, the statisti-
were introduced into the study of long-range correlation incal method used must still be able to describe the asymptotic
DNA sequences. More details about the studies in this fieldproperties of the correlation structure when the data are ap-
their methods and results, can be found2+-11] and the  proaching infinity.
review of Roma-Rolda et al. [1] and Li[12]. The second is about the potential mathematical model

In previous works, Fourier analysis was used as one of thshen we use various methods to describe the correlation
major techniques to detect and analyze long-range correlatructures. The DNA sequences must be assumed to be er-
tion properties. A power law in the lower-frequency part of godic and stationary before being analyzed by Fourier trans-
the DNA spectrum is considered to be evidence of longformation. DNA sequences all have finite lengths and can be
range correlation structure. The long-range correlation struamodeled as self-similar processes embedded in white back-
ture is described as aft/process, and the value is used as ground noise. Thus, under this condition, parametric meth-
the distinguishing feature among different classifications a®ds will be more promising than nonparametric methods
well as between the coding and noncoding sequencesuch as Fourier analysis, as far as modeling accuracy is con-
[3,5,9,11. However, in terms of statistical accuracy, Fourier cerned, and the result will be more robust. This is the reason
analysis is not the best way to estimate the fractional expothat we use the Fractional Gaussian NgiEEN) model and
nent, for it lacks statistical robustness in parameter estima-urst index to describe the long-range correlation properties
tion. in this paper.

Before further investigating the long-range correlation Another statistical issue we should be aware of is that the
properties in DNA sequences, we must first be aware oparametric methods are model dependent. When we model
some technical notions about the length scale as well as titte DNA sequence as a FGN process, we must check the
model assumption of the correlation structures. valid scale and model accuracy of the correlation structure.

First, what is the length scale meant by the term *long-As discussed 5], DNA sequences exhibit a “partial fi¥
range” in the terminology “long-rangébase-base, statisti- spectrum,” so that the length scale that possesses these prop-
cal) correlation”? In some early papers, it is meant to beerties should be checked carefully while using these meth-

ods.
In the field of traffic modeling in computer networks,
*Electronic address: luxin@jerry.au.tsinghua.edu.cn long-range correlation phenomena have been investigated
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extensively[14—17. Many statistical algorithms to verify similar stochastic process in the sense of Eg.[14]. In
long-range correlation have also been implemented succesequency domain, it can be expressed equivalently as
fully. Using these methods, we analyzed in great detail the

long-range correlation properties in the DNA sequences. The fON~N"TAL,(N), A—0 (2
goal of this paper is to explore the asymptotic long-range

correlation properties of DNA sequences, therefore we seherel; is a slowly varying function andi(\) is the spec-
lected whole genomes of bacteria, which usually have thé&al density function.

length of more than 1 000 000 base paB®). Definiion 1. Let  XM=(x{™ x{M, . ..)m

In this paper whole genomes of seven eubacteria: Escheri=1,2,3 . ..) be them block process oK, defined as sum-
chia coli (4 639 221 bp, G-C: 50.8%, Haemophilus influ- ming the original seriesX over nonoverlapping blocks of
enzae(1 830 140 BP, G-C: 38.1%, Helicobacter pylori sizem: X(m)(k)z(1/m)2!‘£"(k,1)m+1X(i), k=12,..., and
(1167867 BP, G-C: 38.9%, Mycoplasma genitalium r(™ is the autocorrelation function of(™.

(580073 BP, G-C: 31.7%, Mycoplasma pneumoniae Definition 2. Xis called strictly(second orderself-similar
(816 394 BP, GC: 40.09%, Rhizobium sp. NGR234 with the Hurst indexH=1—8/2, if the m block process
(536 165 BP, G-C: 58.5%, Synechocystis PCC6803 X(™ has the same correlation structure with the original pro-
(3573470 BP, G-C: 47.7%, and 1 archaea: Methanococ- cessX, that is,

cus jannaschii(l 664 970 BP, G-C: 31.4% are investi-

gated. (These data are provided by NCBI ftp:// rMmk)=r(k) for all (m=1,2,...k=1,2,...). (3
nchi.nim.nih.gov/genbank/genomes/bacteria Gstands for

guaninetcytosing. Using the average spectrum and other Definition 3.If Eq. (3) can only hold whem— co, thenX
statistical methods, it was found that there exist long-rangés called asymptotically self-similar, with the Hurst index
correlation properties in the DNA sequences of bacteriaH=1—3/2. That is, wherm— c,

within scales longer than 200 BP. This property does not 1
vanish when the length is extended to the whole genome. 1— m 2,1,0— _

Thus the correlation structure under the length scale between r(1) =2 = 1r ™k~ 55 (A (k=23,..),

200 BP and the whole sequence can be modeled by the FGN 4)
process asymptotically.

The paper is organized as follows. In Sec. Il we give awhered*(f(k))=f(k+1)—2f(k)+f(k—1). Definition 2 is
brief introduction to the self-similar stochastic procéss  Often used in modeling the self-similar stochastic process, for
long-range dependent procgsss well as the statistical it can express the properties of the stochastic process under
methods of Hurst index estimation. In the study of long-largem (time scalg, which is what we are interested in.
range correlation structures of DNA sequences, the paramet- The main feature of a strictly and asymptotically self-
ric methods introduced in Sec. Il will be more promising andsimilar stochastic process is the autocorrelation function
the results will be more robust than nonparametric methods™ (k) #0 whenm—-co. But in the short-range correlation
such as Fourier analysis. In Sec. Il the long-range correlaprocess, theX(™ asymptotically approaches white noise, or
tion properties in the DNA sequences of bacteria are studied.™ (k) —0 whenm— . Therefore stochastic processes that
Their Hurst indexes are estimated by various methods, anshtisfy definition 3 are also called long-range dependent pro-
the results are presented. The consistency among these ®sses. Its characteristic in the frequency domain is that
sults further supports the existence of long-range correlatiofi(A) ~X\ ~1"AL,(\) (0<B<1) when\x—0. Lo(*) is also a
properties in DNA sequences of bacteria and reinforces thelowly varying function and (\)=3,r (k)e™ ¥\ is the spec-
reliability of these methods. Finally, biological meaning andtrum density function. The FGN process, which is imple-
origin of long-range correlation properties are discussed inmented in this paper for description of the correlation prop-
Sec. IV. erties in the lower-frequency part of the DNA spectrum, is
one of the simplest and most well established models of
stationary self-similar processes.

One of the attractive features of using self-similar models,

STOCHASTIC PROCESS AND ESTIMATION OF when appropriate, is that the degree of self-similarity can be

THE HURST INDEX expressed by only a single parameter. This parameter ex-
In this section we briefly introduce the self-similar sto- Presses the speed of decay of the autocorrelation function.

chastic process and the methods of Hurst index estimatior].N® parameter used is the Hurst indéx 1— /2. Thus, for
Details can be found ifil5,18,19 and relative topics listed Self-similar series with long-range dependence <I#2<1.

Il. MATHEMATICAL DEFINITION OF SELF-SIMILAR

therein. As H—1, the degree of both self-similarity and long-range
Suppose we have a Covariance Stationary Stochastic prg_epend’\ence INCreases. OtherW|Se, if the Hurst |ndeX esti-

cessX=(X1,X5, ... X, ...),which has the following au- matedH is approximately equal to 0.5 whem—c, it

tocorrelation structure: means that only short-range correlation is presented, or that

X(M is asymptotic white noisg20].

It has been discussed i8,5,9,1] that the DNA se-
quences act as self-similar processes. Therefore, in the esti-
mation of self-similar exponents of DNA sequences, the
where 0<B<1, andL, is a slowly varying function, that is, implementation of fractal-based methods, which possess the
lim,_..L.(kx)/L,(k)=1 for all x>0. Then we calX a self- nature of self-similarity, is natural and convenient, and the

r(k)=E[(X;— 1) Xesk— )1~k PLy(K), k—oo (1)
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FIG. 3. Linear fitting figure for Hurst index estimation of adenine from E. coli.
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FIG. 2. (a) 100 BP density distribution of adenine from E. coli

. o and (b) a FGN process with the same length and a Hurst index of
FIG. 1. Average spectrum of adenine from E. coli with subse-q 7.

quencega) 1024, (b) 4096, and(c) 16 384.
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Xhexis is the log plot of block size, which reflects

the length scale in which the correlation structure exists. Yhaxis is the statistics calculated by various methods. Only the slopes in the

figures are analyzed, which are directly related to the Hurst index.
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TABLE |. Estimation results of various methods: E. coli. TABLE Ill. Estimation results of various methods: H. pylori.
A T C G A T C G

RS 0.7097 0.7014 0.7284 0.7414 RS 0.7419 0.7460 0.7844 0.7697
Variance time 0.6777 0.6774 0.7819 0.8061 Variance time 0.6716 0.5931 0.8051 0.7700
Scale 2 0.7301 0.7330 0.7259 0.7246 Scale 2 0.7412 0.7477 0.7054 0.7023
Scale 4 0.7310 0.7337 0.7266 0.7250 Scale 4 0.7427 0.7492 0.7050 0.7026
Scale 6 0.7309 0.7340 0.7259 0.7241 Scale 6 0.7430 0.7483 0.6987 0.6988
Scale 8 0.7284 0.7319 0.7207 0.7176 Scale 8 0.7353 0.7420 0.6817 0.6771
Scale 10 0.7096 0.7171 0.6980 0.6918 Scale 10 0.7035 0.7029 0.6506 0.6368
Higuchi 0.6531 0.6615 0.7770 0.7934 Higuchi 0.6830 0.6186 0.8032 0.7686
AVAS 0.6760 0.6770 0.7940 0.8222 AVAS 0.6729 0.5920 0.8059 0.7738
q=15 0.6732 0.6726 0.7828 0.8088 g=1.5 0.6676 0.5887 0.8007 0.7666
q=2 0.6692 0.6685 0.7732 0.7977 qg=2 0.6624 0.5847 0.7959 0.7609
q=25 0.6644 0.6646 0.7648 0.7883 =25 0.6657 0.5803 0.7915 0.7560
q=3 0.6559 0.6608 0.7571 0.7800 g=3 0.6519 0.5754 0.7874 0.7516
q=35 0.6536 0.6570 0.7501 0.7501 g=3.5 0.6465 0.5700 0.7835 0.7835
q=4 0.6481 0.6532 0.7437 0.7437 qg=4 0.6411 0.5641 0.7798 0.7798
result_s yie_lded will be more _accqrate. The st'atisticgl tools IIl. LONG-RANGE CORRELATION PROPERTIES
used in this paper for the estimation of Hurst index include IN THE DNA SEQUENCES OF BACTERIA

time domain methods such as R&scaled adjusted range
statistig analysis [21], variance-time analysi§18], the
AVAS method(absolute values of the aggregated serite

Higuchi method[19], and the wavelet-domain-based EM ria, the average spectrum is studied first. In Buldye¢al.

analysis method22]. . : ;
TKe main idga él)f time domain methods can be summaL?’]’ the subsequence length is 512, but in this paper, the

rized as two steps: First, to calculate some statistics imthe subsequence length varies from 1024 to 16 384. Figure 1

) X . .~ shows the average spectrum of adenine from E. coli; other
block process; second, to investigate the power-law relation- LTS X
. . L ase density distributions along each bacteria show the same
ship between the block siza and the calculated statistics.

The wavelet domain EM method can be used for the estimapherjomenon. . .
. . e . Figure 1 shows that by increasing the subsequence length,
tion of fractal parameter of signals under additive white

. . . : . : ; . the long-range correlation property is gradually more appar-
noise. This method is an iterative algorithm, includingEan ent in the lower-frequency part of the DNA spectrum. The

step|> andham/l step. Usmr? parametgrs ;mder various ]:Naveleltmiddle part of the frequency is approximately white noise,
scales, the shtep gets the est|m:;11t|on or variance OI S|gnz_5; but the lower-frequency part displays the long-range correla-
and noise. T EM step |terates.t € e§t|mgt|on resu ts unt tion property. The turning point between the middle and the
they converge in a MLEmaximum likelihood estimaje lower part is about 200—400 BP. The long-range correlation

sense. This method can be used to examine the consisten Y . . . .
i . . operty is gradually more clearly displayed with the in-
of estimation results under various wavelet scales. ﬁ perty 9 y y play

To answer the question of whether or not there exist long-
range correlation properties in the DNA sequences of bacte-

TABLE II. Estimation results of various methods: H. influenzae. TABLE IV. Estimation results of various methods: M. genitalium.

A T C G A T Cc G
RS 0.6779 0.7234 0.7809 0.7916 RS 0.7433 0.7813 0.7858 0.7632
Variance time 0.6533 0.6807 0.7570 0.7688 Variance time 0.6512 0.8509 0.7850 0.8626
Scale 2 0.6954 0.7053 0.7075 0.7083 Scale 2 0.7167 0.7377 0.6461 0.6788
Scale 4 0.6963 0.7035 0.7072 0.7066 Scale 4 0.7190 0.7302 0.6343 0.6727
Scale 6 0.6992 0.7044 0.7049 0.7014 Scale 6 0.7166 0.7074 0.5896 0.6564
Scale 8 0.6940 0.6989 0.6815 0.6780 Scale 8 0.6936 0.6984 0.5760 0.6338
Scale 10 0.6648 0.6595 0.6441 0.6336 Scale 10 0.6371 0.6211 0.5042 0.6416
Higuchi 0.6344 0.6741 0.7517 0.7498  Higuchi 0.6432 0.8416 0.7477 0.8492
AVAS 0.6545 0.6649 0.7677 0.7678 AVAS 0.6348 0.8522 0.7757 0.8657
q=1.5 0.6506 0.6684 0.7582 0.7654 g=1.5 0.6387 0.8457 0.7760 0.8597
q=2 0.6466 0.6725 0.7492 0.7611 qg=2 0.6401 0.8406 0.7740 0.8527
q=2.5 0.6424 0.6760 0.7406 0.7560 qg=2.5 0.6399 0.8363 0.7705 0.8448
q=3 0.6382 0.6784 0.7321 0.7497 qg=3 0.6387 0.8324 0.6470 0.8362
q=3.5 0.6338 0.6795 0.7237 0.7237 g=3.5 0.6369 0.8288 0.7609 0.7609
q=4 0.6294 0.6795 0.7155 0.7155 qg=4 0.6346 0.8255 0.7552 0.7552
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TABLE V. Estimation results of various methods: M. pneumoniae. TABLE VI. Estimation results of various methods: R. NGR234.

A T C G A T C G
RS 0.8026 0.7897 0.7884 0.8277 RS 0.7542 0.7709 0.7765 0.7597
Variance time 0.7529 0.7397 0.7303 0.7001 Variance time 0.6145 0.5905 0.6568 0.6147
Scale 2 0.7526 0.7260 0.7233 0.7366 Scale 2 0.7049 0.6773 0.6746 0.7030
Scale 4 0.7541 0.7269 0.7233 0.7354 Scale 4 0.7063 0.6774 0.6751 0.7018
Scale 6 0.7385 0.7141 0.6931 0.7013 Scale 6 0.6792 0.6451 0.6367 0.6795
Scale 8 0.6881 0.6491 0.6300 0.6296 Scale 8 0.6578 0.6167 0.6088 0.6266
Scale 10 0.6590 0.5931 0.6041 0.5511 Scale 10 0.5891 0.5212 0.5721 0.5773
Higuchi 0.7338 0.7249 0.7170 0.7062  Higuchi 0.6261 0.6250 0.6656 0.6076
AVAS 0.7526 0.7194 0.7336 0.7005 AVAS 0.6120 0.5868 0.6574 0.6007
q=1.5 0.7502 0.7277 0.7292 0.6971 qg=15 0.6078 0.5843 0.6508 0.6024
q=2 0.7460 0.7324 0.7232 0.6929 =2 0.6025 0.5828 0.6449 0.6030
q=2.5 0.7412 0.7346 0.7264 0.6883 g=25 0.5968 0.5814 0.6393 0.6025
g=3 0.7361 0.7352 0.6648 0.6834 =3 0.5918 0.5798 0.5217 0.6012
g=3.5 0.7309 0.7346 0.7023 0.7023 g=3.5 0.5852 0.5778 0.6288 0.6288
q=4 0.7257 0.7333 0.6952 0.6952 q=4 0.5793 0.5756 0.6239 0.6239

crease of subsequence length. Similar results can be derivéide difference between this distribution and an asymptoti-
for other bacteria genomes. cally second order self-similar proce@ich as a FGN pro-
As discussed in Sec. I, Fourier analysis is a nonparametricess.

method. The stationary property of the spectrum is hard to Figure 2 shows the 100 BP density distribution of adenine
guarantee under a larger scale. In previous works, the DNArom E. coli, as well as a FGN process with the same length
sequences are segmented into subsequences with identiedld a Hurst index equal to 0.7. From Fig. 2 it can be seen
lengths, and the average spectrum is calculated over theggat the density distribution of nucleotide and the FGN pro-
subsequencef3,5,11. With this approach, the correlation cess all perform as self-similar processes. The algorithms
properties revealed are limited by the subsequence lengtihiroduced in Sec. Il are implemented in this paper. The least
The numb_er _of_subsequences for the calculation of averaggyuares linear fitting in the log-log plots shows that the re-
spectrum is limited, and the scale range of asymptotic 10nggits are reliable. The corresponding calculated Hurst in-

range correlation is hard to determine. In Buldyehal. [3], dexes are all larger than 0.5, which testifies to the existence

g:)% iﬁovggr_lljaevxcreesl?goelsrr;?ng:i ?Se”:g"z’j'ifsr;?gg:%y ;?tri]f%it:i)ﬁf the long-range correlation structure within the nucleotide
g seq p y ensity distribution.

the Fourier transformation method. But in this section, with Fiqure 3 is the least squares fitting fiqure for the loa-lo
Hurst index estimation, we will show that there does exist 9 q ghg 9-10g

long-range correlation in the DNA sequences of bacteria, burfIOt of adenine fr(_)m E. _CO|" with the Hurst_ mde_xes esti-
in a scale longer than several hundred BP. mated by RS, variance-time, AVAS, and Higuchi method,

In order to investigate the long-range correlation proper€SPectively.

ties in the DNA sequence more extensively, the statistical

tools introduced in Sec. Il are implemented. Hurst indexes off ABLE VII. Estimation results of various methods: Synechocystis.
the seven eubacteria and one archaea are calculated, and theit
long-range correlation properties are discussed. When map- A T C G

ping the DNA sequences to numerical sequencesqual-

symbol multiplicationmethod, which is recommended by RS_ ) 0.7198 0.7158 0.7250 0.7141
Voss [11] and commented on by Maddds], is imple- Variance time 0.6458 0.6053 0.6050 0.6085

mented. This method decomposes the nucleotide sequent&®€ 2 07269  0.7185  0.6946  0.6958
into four 0-1 sequences, and calculates their Hurst indexescale 4 07278 07193  0.6956  0.6969

separately. So what we have investigated are only the long2cae 6 0.7230  0.7160  0.6870  0.6911

range correlation properties of four single bases along thecale 8 0.7142 07104  0.6767  0.6830
DNA molecule. This also points to some hints for the con-Scale 10 0.6749 ~ 06761  0.6307  0.6440
struction of the DNA molecule. Referring to [[12], only  Higuchi 06503  0.6301 06113  0.6224
three of them are independent, and when the approximat&VAS 0.6429 0.6097 0.6005 0.6050
strand symmetry is considered, only one is independent, but=1.5 0.6418 0.6051 0.5999 0.6041
for the sake of statistical accuracy, all of them are calculated=2 0.6402 0.5990 0.5994 0.6030
in this paper. q=2.5 0.6377 0.5940 0.5986 0.6016

For statistical convenience, we compressed the sequenge-3 0.6343 0.5879 0.5975 0.5999
by sampling it with a range of 100 BP. Therefore our focus isq=3.5 0.6303 0.5816 0.5959 0.5959
narrowed down to the long-range correlation property withing=4 0.6357 0.5752 0.5939 0.5939

the density distribution of the four single bases, as well as
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TABLE VIII. Estimation results of various methods: M. jannaschii. nucleotide can be described asymptotically by the FGN pro-
cess in the lower part of the frequency. Under fine scales of

A T c G wavelet, which correspond to the higher part of the fre-
RS 0.7642 0.7697 0.7875 0.7851 auency, the decrease of the estimated Hurst index can be
Variance time 0.6939 0.6066 0.7180 0.6309 interpreted as in the smaller scale of the DNA sequence; it
Scale 2 0.7855 0.7936 0.8463 0.8496 Ccannot be well modeled by the FGN process any more; this
Scale 4 0.7871 0.7956 0.8479 0.8515 IS also due to the local features of DNA sequences.
Scale 6 0.7883 0.7963 0.8495 0.8534 Apart from the estimation of the Hurst index, the AVAS
Scale 8 0.7799 0.7834 0.8503 0.8492 Mmethod can also serve as the estimation of higher order sta-
Scale 10 0.7278 0.7361 0.7826 0.7899 listics by means of the central moment of timeblock pro-
Higuchi 0.6832 0.6166 0.7103 0.6385 Cess. This can serve to testify whether the long-range corre-
AVAS 0.6818 0.5962 0.7010 0.6089 lation in the DNA sequence is constructed by a multifractal
q=15 0.6842 0.5972 0.7063 0.6166 Or @ monofractal proceg23]. Under the condition that the
q=2 0.6847 0.5976 0.7088 0.6218 ©stimation results by coarse grain are all linear with the
q=2.5 0.6837 0.5972 0.7094 06250 9rowth of the order of statistics, if the estimation results
q=3 0.6815 0.5959 0.7082 0.6264 remain relatively constant, then the signal is only a self-
=35 0.6782 0.5937 0.7056 0.7056 Similar process; otherwise, the sequence is considered to
q=4 0.6741 0.5908 0.7015 0.7015 Presenta multifractal phenomenon. In Tables I-VIII, the line

labeled AVAS is the estimation result of the AVAS algo-
rithm. g=1.5,q=2,9=2.5,q=3, q=3.5,g=4 are the es-
timation results of various orders of statistics. It can be seen
In Tables I-VIII, estimation results of the Hurst index for from Tables I1-VIII that the estimation results of the various
all eight bacteria sequences by various methods are prerders of statistics are consistent, which means that the
sented. Because the DNA sequences are not strictly selftucleotide density distribution along the DNA sequence can
similar processes and the lengths of sequences are finite, the asymptotically modeled by the FGN process.
estimation results of various methods may slightly differ In Tables I-VIII, the results of scale 8 and scale 10 from
from each other. But so long as the Hurst indexes estimatethe wavelet-based EM method are decreased, therefore only
are all greater than 0.5 and consistent, the long-range corréhe results from the RS, variance-time, Higuchi, and AVAS
lation property is verified. methods and wavelet scales 2—-6 are used to calculate
Scale 2, scale 4, scale 6, scale 8, and scale 10 are thiee mean and standard deviation of the Hurst index esti-
estimation results of the wavelet-based EM method undemation. From Tables 1-VIII, it can be seen that the Hurst
various scales. When the scale of wavelet changes from twimdex estimated by various methods for the four single base
to ten and the frequency range becomes narrower, a(ocal density distributions are all larger than 0.5. This means
high-frequencyfeature can be detected. Under coarse scalethat there do exist long-range correlation properties along
of wavelet(scales 2, 4, and)pwhich correspond to the lower the DNA sequences. The mean and standard deviation of
part of the frequency, the estimation results remain relativelyhe estimation results are listed in Table 1X. It can be seen
constant, which means that the density distribution of thehat the mean values are between 0.65 and 0.8, with reason-

TABLE IX. Mean and standard deviation of estimation results from various methods.

Name of bacteria A T C G
E. coli Mean(H) 0.7012 0.7026 0.7514 0.7624
Std(H) 0.0321 0.0312 0.0312 0.0432
H. influenzae Mean(H) 0.6730 0.6938 0.7396 0.7420
Std(H) 0.0257 0.0209 0.0322 0.0364
H. pylori Mean(H) 0.7138 0.6850 0.7582 0.7408
Std(H) 0.0357 0.0788 0.0522 0.0371
M. genitalium Mean(H) 0.6964 0.7859 0.7092 0.7498
Std(H) 0.0395 0.0624 0.0831 0.0876
M. pneumoniae Mean(H) 0.7553 0.7344 0.7299 0.7297
Std(H) 0.0224 0.0256 0.0290 0.0461
R. NGR234 Mean(H) 0.6710 0.6533 0.6775 0.6667
Std(H) 0.0549 0.0635 0.0456 0.0604
Synechocystis Mean(H) 0.6909 0.6735 0.6599 0.6620
Std(H) 0.0419 0.0553 0.0522 0.0476
M. jannaschii Mean(H) 0.7406 0.7107 0.7801 0.7454

Std(|:|) 0.0515 0.0981 0.0693 0.1144
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ably small deviation, which further supports the reliability relation structure of DNA sequences can also be considered
of these results. to be a result of the evolution proced?]. A model called
the expansion-modification model, which is introduced in
IV. CONCLUSION [28,29, can emulate this process, and was shown to exhibit
€ same properties.
In this paper some parametric methods to estimate the
rst index from the FGN point of view are introduced.

In this paper the long-range correlation properties in theth
whole genomes of bacteria are verified. The genomes of ba<f_—|u
teria always have a length of more than 1 000 000 BP. Th . . ;
results of this paper suggest that the asymptotic long-rang ompa_lred with nonparametric methods su_ch as Fou_rler
correlation property is one of the natural properties that DNA2N@lysis, the performance of these methods is more station-
sequences possess, and is directly related to the structure a¥g When applied to sequences with finite length, and the
function of the whole DNA molecule. results yielded are more robust. With these methods, eight

There are still many discussions concerning the biologicayvhole bacteria genomes are analyzed, and the long-range
meaning and the Origin of the |0ng_range correlation propercorrelauon prOpertIeS N these Sequences are Ver|f|ed. The
ties in the DNA sequences. [24—26, these properties are lower limit of the length scale for this property is about 200—
considered to be related to the construction of the highef00 BP, and it can extend through the whole molecule of
order structure of the DNA molecule. [i1], Voss points DNA. In longer scales, the results from higher order statistics
out that the scale-independent correlations seem to offer thare consistent, so the lower-frequency part can be well de-
best compromise between efficient information transfer andcribed asymptotically by a FGN process. This study can
immunity to errors on all scales. [10,27, it is argued that motivate the analysis of the DNA sequence structures under
neither the patchiness, the alternation of coding and noncodarger scales. Furthermore, the biological meaning behind the
ing regions, nor the repetitive sequences is able to fully extong-range correlation properties still calls for further inves-
plain the long-range correlation properties of DNA. The cor-tigation.
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